Abstract
The equilibrium swelling study of polyurethanes (PU) was carried out in various solvents in order to calculate their solubility parameter. The kinetics of swelling and sorption have also been studied in 1,4‐dioxane at 30°C. The PU was synthesized by reacting a novel polyol (castor oil derivative and epoxy based resin, EpxR) and one of the polyethylene glycols (PEG 200, PEG 400, PEG 600) with different weight compositions, with a toluene diisocyanate (TDI) adduct (derived from toluene diisocyanate and R60 polyol). Different NCO/OH ratio viz. 1, 1.3 and 1.7 were employed in the study. The results were found to vary with the weight composition of polyol components, as well as the crosslink density of the samples. The sorption behavior is also found to vary with the molecular weight of polyethylene glycol employed in the preparations of the polyurethanes. Kinetic studies of swelling revealed that the sorption is anomalous in nature. The diffusion coefficient (D) increased with an increase in the NCO/OH ratio and decreased with an increase in chain length of polyethylene glycol. The sorption coefficient (S) decreased with an increase in crosslink density (NCO/OH) and increased with increasing polyethylene glycol (i.e., PEG 200, PEG 400, and PEG 600) moieties in the polyurethanes. The molecular weight between two crosslink points was calculated using the Flory Rehner equation (24), and hence, the number of chains per unit volume (N) and degree of crosslinking (ν) in all the samples were determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Macromolecular Science, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.