Abstract

The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol * L −1 H 2SO 4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS). Cyclic voltammetry experiments show that the current of oxygen evolution on Pb-Ca-Sn-Ce electrode is lower than that of Pb-Ca-Sn electrode in the same anodic voltage. Moreover, the oxygen evolution potential on the former electrode is greater than that on the latter, and this means that Ce can increase the potential of oxygen evolution on Pb-Ca-Sn alloy. The AC impedance experiments show that Ce can also enhance the resistance of hydrogen evolution on Pb-Ca-Sn electrode, i.e., Ce can inhibit the hydrogen evolution on Pb-Ca-Sn electrode. The reason why Ce decreases the volume of hydrogen evolution on Pb-Ca-Sn alloy is that Ce increases the resistance of absorbing step of hydrogen evolution reaction. All the experimental results indicate that Pb-Ca-Sn-Ce alloy can rapidly decrease the oxygen and hydrogen evolution on Pb-Ca-Sn-Ce alloy. It is concluded that Pb-Ca-Sn-Ce alloy can promote the maintenance-free property of lead acid battery, and can serve as the candidate of the grid material for maintenance-free lead acid battery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.