Abstract

A solid state reaction method was used to synthesize barium titanate (BT) and barium cerium titanate (BCT) ceramics at sintering temperature of 1473 K for 4 h. The effect of cerium (Ce) on the structure, microstructure and dielectric properties of BCT was investigated. The scanning electron microscopy (SEM) investigations revealed that the grain size increases with increasing Ce content. The X-ray diffraction (XRD) patterns showed mostly the BT phase, where the lattice parameter decreased with the addition of Ce. The temperature dependence of dielectric constant showed decrease in the phase transition temperature with higher Ce content. The dielectric constant decreased slightly with increasing frequency. The direct current (dc) density-voltage characteristics of the ceramics showed ohmic behavior for both the BT and BCT. As the temperature increased, the dc resistivity of the ceramics decreased. The activation energy increased with increasing Ce content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call