Abstract

One of the key impediments to aluminum (Al) as an anode in alkaline Al-air batteries is self-corrosion, which limits the battery’s efficiency due to the capacity loss and lifespan reduction. Thus, it is vital to find an efficient electrolyte additive that reduces self-corrosion in Al anodes. In this study, the effect of adding 0.5 to 1.5 wt% of cerium chloride to 4 mol l−1 KOH electrolyte on the self-corrosion of pure Al anode was investigated using electrochemical experiments. The results show that the addition of cerium chloride to the electrolyte reduces self-corrosion of the Al anode with a negligible effect on the anode activity. Cerium chloride forms cerium hydroxide (Ce (OH)3) in the alkaline electrolyte, which is adsorbed on the Al surface. Therefore, the corrosion potential increased, and self-corrosion current density decreased. As the cerium chloride concentration increased, the Al anode efficiency increased from 43.8% to 76.1%, and the capacity density increased from 1294 to 2244 mAh g−1. Furthermore, increasing the immersion time of the Al anode in the electrolyte containing cerium chloride increased the self-corrosion resistance and provided the self-healing properties for the anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.