Abstract

This work presents an investigation on the influence of rare earth additions (Ce) on the microstructure and mechanical properties of a cast Fe85Cr4Mo8V2C1 (element contents in wt%) tool steel. The applied relatively high solidification rate during the casting process promotes the formation of non-equilibrium phases such as martensite, retained austenite as well as a fine network-like structure of complex carbides. This combination of phases and their morphology results in excellent mechanical properties already in the as-cast state.Cerium additions induce a change in phase formation and resulting mechanical properties. Besides morphological and quantitative changes of the main constituent phases, novel carbo-oxide and carbide phases are formed. To investigate this microstructural phenomenon, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDX) were applied.Altogether, the addition of small amounts of the rare earth element cerium together with a tailored casting process results in enhanced mechanical properties compared to the Fe85Cr4Mo8V2C1 alloy and offers new possibilities to obtain high-strength and simultaneously adequate ductile cast steels for advanced tool design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.