Abstract

Elastic properties, compressive stress–strain behaviour and progressive damage evolution of poly-domain metal/ceramic composite samples fabricated by infiltration of Al12Si melt in freeze-cast alumina preforms are studied. Two different preform freezing temperatures were employed to vary the lamellae size while infiltration was carried out using two different techniques – squeeze-casting and die-casting. Due to the faster cooling kinetics at the lower freezing temperature, the lamellae size in the composites based on these preforms are finer and this results into higher compressive strength and stiffness of this composite along the freezing direction. Among the two techniques employed for melt infiltration, the very fast rate of pressure application in die-casting distorts the lamellar structure of the ceramic along the freezing direction. As a result, in die-cast composite samples, the strength and stiffness along the freezing direction are reduced significantly in comparison to the samples infiltrated by squeeze-casting. In-situ scanning electron microscopy under external compression was used to study the progressive damage mechanism in one poly-domain composite sample infiltrated by squeeze-casting. Transverse cracking of the high-angle ceramic lamellae is identified as the predominant damage mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.