Abstract

The purpose of these studies is to better understand the nature of the reflex interactions that control the discharge patterns of caudal medullary, expiratory (E) bulbospinal neurons. We examined the effect of central chemodrive inputs measured as arterial CO(2) tension (Pa(CO(2))) during hyperoxia on the excitatory and inhibitory components of the lung inflation responses of these neurons in thiopental sodium-anesthetized, paralyzed dogs. Data from slow ramp inflation and deflation test patterns, which were separated by several control inflation cycles, were used to produce plots of neuronal discharge frequency (F(n)) versus transpulmonary pressure (P(t)). P(t) was used as an index of the activity arising from the slowly adapting pulmonary stretch receptors (PSRs). Changes in inspired CO(2) concentrations were used to produce Pa(CO(2)) levels that ranged from 20 to 80 mmHg. The data obtained from 41 E neurons were used to derive an empirical model that quantifies the average relationship for F(n) versus both P(t) and Pa(CO(2)). This model can be used to predict the time course and magnitude of E neuronal responses to these inputs. These data suggest that the interaction between Pa(CO(2)) and PSR-mediated excitation and inhibition of F(n) is mainly additive, but synergism between Pa(CO(2)) and excitatory inputs is also present. The implications of these findings are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.