Abstract

Interest in nanocellulose obtained from natural resources has grown, mainly due to the characteristics that these materials provide when incorporated in biodegradable films as an alternative for the improvement of the properties of nanocomposites. The main purpose of this work was to investigate the effect of the incorporation of nanocellulose obtained from different fibers (corncob, corn husk, coconut shell, and wheat bran) into the chitosan/glycerol films. The nanocellulose were obtained through acid hydrolysis. The properties of the different nanobiocomposites were comparatively evaluated, including their barrier and mechanical properties. The nanocrystals obtained for coconut shell (CS), corn husk (CH), and corncob (CC) presented a length/diameter ratio of 40.18, 40.86, and 32.19, respectively. Wheat bran (WB) was not considered an interesting source of nanocrystals, which may be justified due to the low percentage of cellulose. Significant differences were observed in the properties of the films studied. The water activity varied from 0.601 (WB Film) to 0.658 (CH Film) and the moisture content from 15.13 (CS Film) to 20.86 (WB Film). The highest values for tensile strength were presented for CC (11.43 MPa) and CS (11.38 MPa) films, and this propriety was significantly increased by nanocellulose addition. The results showed that the source of the nanocrystal determined the properties of the chitosan/glycerol films.

Highlights

  • With the advancement of nanotechnology and nanoscience, materials are modulated in their technologies, generating new technologies to incorporate to the needs of the current society [1,2,3,4,5]

  • Studies evaluate the application of nanocrystals obtained by several fibers in polymeric systems, for example, barley straw and husk in poly(vinyl alcohol) (PVA) blended with natural chitosan (CH) nanocomposites [18], pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) [19], and sunflower stalks on wheat gluten bionanocomposites [20]

  • The results found in the study confirm that the nanocellulose crystals of coconut shell (CS), corn husk (CH), and corncob (CC) fibers incorporated into the chitosan/glycerol films are presented as promising materials for the development of biodegradable composites

Read more

Summary

Introduction

With the advancement of nanotechnology and nanoscience, materials are modulated in their technologies, generating new technologies to incorporate to the needs of the current society [1,2,3,4,5]. The high availability of lignocellulosic fibers, coupled with the need for a renewable source for the production of polymers, represents a great opportunity for technological advances that add value to the products or residues of the agroindustry and, at the same time, act in the fixation of carbon in nature [21,22,23,24] This implies helping to reduce the emission of CO2 into the atmosphere during the production cycle, increasing the economic potential of agribusiness due to the possibility of trading carbon credits in the production chain [25,26,27,28,29]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call