Abstract

Illness negatively affects all aspects of life and one major cause of illness is viral infections. Some viral infections can last for weeks; others, like influenza (the flu), can resolve quickly. During infections, uninfected cells can replicate in order to replenish the cells that have died due to the virus. Many viral models, especially those for short-lived infections like influenza, tend to ignore cellular regeneration since many think that uncomplicated influenza resolves much faster than cells regenerate. This research accounts for cellular regeneration, using an agent-based framework, and varies the regeneration rate in order to understand how cell regeneration affects viral infection dynamics under assumptions of different modes of transmission. We find that although the general trends in peak viral load, time of viral peak, and chronic viral load as regeneration rate changes are the same for cell-free or cell-to-cell transmission, the changes are more extreme for cell-to-cell transmission due to limited access of infected cells to newly generated cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call