Abstract
The localization of an epitope-tagged receptor for thyrotropin-releasing hormone (TRH) expressed in different cell contexts was studied with immunofluorescence microscopy. In pituitary lactotrophs, which normally express TRH receptors, and in AtT20 pituitary corticotrophs, TRH receptor immunoreactivity was primarily confined to the plasma membrane. In HEK 293 and COS7 cells, TRH receptors were predominantly intracellular. In transiently transfected COS7 cells, the TRH receptor colocalized with endoplasmic reticulum and Golgi markers. The pattern of TRH receptor immunofluorescence was the same over a wide range of receptor expression in transiently transfected COS7 cells, and all cell lines bound similar amounts of 3H- and rhodamine-labeled TRH analogs, suggesting that cell-specific differences in TRH receptor localization were not simply the result of overexpression. In all cell contexts, TRH receptors on the plasma membrane underwent extensive ligand-driven endocytosis. Inhibitors of glycosylation did not alter the subcellular distribution of receptors. In HEK 293 cells expressing the transfected TRH receptor, protein synthesis inhibitors caused translocation of intracellular receptors to the cell surface, as shown by a marked increase in cell surface immunofluorescence and [3H][N3-methyl-His2]TRH binding. These results demonstrate that the subcellular localization of the TRH receptor depends on the cell context in which it is expressed and that intracellular receptors are capable of translocation to the plasma membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.