Abstract

Subcutaneous delivery of islets in a methacrylic acid-based hydrogel may offer a functional cure for type 1 diabetes. Here we show in mice that the hydrogel is able to provide sufficient vasculature to support islet function and viability, when islets are used at a low islet volume fraction (i.e., cell density). The Krogh cylinder model was used to mathematically estimate the effect of implant volume, for a fixed islet dose (600 islet equivalents [IEQ]), on the minimum vessel density required to maintain sufficient pO2 within the graft. Modeling suggested that 200 μL implants would have low enough islet densities and enough vessels to have islets remain viable, but that 50 μL implants would not; this was confirmed experimentally through measurement of glucose level in streptozotocin-induced diabetic severe combined immunodeficiency disease (SCID/bg) mice, comparing 200 and 50 μL implants, both with 600 IEQ. Vessel densities were ∼20-30 vessels/mm2 independent of implant volume and vessels were sufficient to increase subcutaneous oxygen tension, as measured with microcapsules containing oxygen sensitive material (a platinum [Pt] porphyrin); both these results were determined without cells. These results are useful in thinking about the scale-up of this system to humans: to maintain a low islet density (∼0.5%), many more islets will require attention to the subcutaneous implant configuration to satisfy the oxygen needs of the cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call