Abstract
The kinetics of DNA double-strand breakage (d.s.b.) repair in X-irradiated Chinese hamster V79 cells were found to be affected by cell-cycle position. In mitotic cells, the repair kinetics were monophasic with a half-time value of about 32 min, whilst in G1, S, or asynchronous cultures, the kinetics were biphasic with half-time values of around 2.7 and 27 min. The repair of DNA single-strand breakage (s.s.b) was also shown to be slower in mitotic than in interphase cells. The DNA d.s.b. repair system, in both mitotic and interphase cells, showed no evidence of saturation within the X-ray dose range covered. The implications of these findings for the mechanism of DNA d.s.b. repair and for models of ionizing radiation action are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of radiation biology and related studies in physics, chemistry, and medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.