Abstract

CdS buffer layer of varying thickness ranging from 23 to 58 nm deposited at different substrate temperature were prepared as n-type junction partner for thermally grown Cu(In,Ga)Se2 and two-step chalcogenized Cu(In,Ga)(S,Se)2 photovoltaic absorber films and the effect of deposition temperature and time on the CdS growth behavior and solar cell performance were evaluated. High deposition temperature resulted in a thicker CdS layer and more importantly lower density and shallower depth of open voids, which attributed to the improved open-circuit voltage and fill factor due to reduced interface recombination. The solar cell efficiency of thermally grown absorber saturated at about 30 nm thickness of CdS, while that of chalcogenized absorber gradually increased with CdS thickness up to 60 nm without significant loss of short-circuit current density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.