Abstract
AbstractTo acquire a better understanding of the influence exerted by the presence of Cd2+ during the process of transforming ferrihydrite to goethite, the morphological and structural changes of several samples obtained by the addition of Cd2+ to a suspension of nascent goethite were explored, and their chemical reactivity in acid media assessed. The samples (series Gi) were obtained by adding, at different times during the synthesis process, Cd2+ ions to ferrihydrite (Fe5HO8.4H2O) formed in alkaline media. The suspensions were aged for 5 days at 70°C, and the amorphous materials were extracted using a HCl solution (series GHCl-i). The X-ray diffraction (XRD) patterns showed that a goethite-like phase was formed, and chemical analyses indicated that the Cd content, xCd, increased with the earlier addition of the Cd2+ ions to the Fe oxyhydroxide suspension. Lattice parameters and cell volume, obtained by the Rietveld simulation of XRD data, indicated an enlargement of the cell parameters of goethite in line with the Cd-for-Fe substitution. In order to determine the influence of oxalate ions on the non-extracted solids, a second set of samples was also prepared that was kept in contact with an ammonium oxalate solution for 4 h (series Gox-i). The dissolution behavior of two series of Cd goethites and of a third series, obtained from coprecipitation of Fe3+ and Cd2+ ions in alkaline media, was observed. Kinetics measurements in 4 M HCl showed that the initial dissolution rate of samples Gox-i decreased with aging time, while the opposite effect was observed for series GHCl-i. Dissolution–time curves were well described by the Kabai equation, and activation energies were calculated using the Arrhenius equation. The results indicate that the presence of Cd during the crystallization process of goethite leads to the formation of a Cd goethite with modified morphology, structural parameters, and chemical reactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.