Abstract

Pancreatic secretagogues enhance acinar protein synthesis at physiological concentrations and inhibit protein synthesis at high concentrations. We investigated the potential role in this process of the eukaryotic translation initiation factor (eIF)2B. Cholecystokinin (CCK) at 10-100 pM did not significantly affect eIF2B activity, which averaged 35.4 nmol guanosine 5'-diphosphate exchanged per minute per milligram protein under control conditions; higher CCK concentrations reduced eIF2B activity to 38.2% of control. Carbamylcholine chloride (Carbachol, CCh), A-23187, and thapsigargin also inhibited eIF2B and protein synthesis, whereas bombesin and the CCK analog JMV-180 were without effect. Previous studies have shown that eIF2B can be negatively regulated by glycogen synthase kinase-3 (GSK-3). However, GSK-3 activity, as assessed by phosphorylation state, was inhibited at high concentrations of CCK, an effect that should have stimulated, rather than repressed, eIF2B activity. An alternative mechanism for regulating eIF2B is through phosphorylation of the alpha-subunit of eIF2, which converts it into an inhibitor of eIF2B. CCK, CCh, A-23187, and thapsigargin all enhanced eIF2alpha phosphorylation, suggesting that eIF2B activity is regulated by eIF2alpha phosphorylation under these conditions. Removal of Ca(2+) from the medium enhanced the inhibitory action of CCK on both protein synthesis and eIF2B activity as well as further increasing eIF2alpha phosphorylation. Although it is likely that other mechanisms account for the stimulation of acinar protein synthesis, these results suggest that the inhibition of acinar protein synthesis by CCK occurs as a result of depletion of Ca(2+) from the endoplasmic reticulum lumen leading to phosphorylation of eIF2alpha and inhibition of eIF2B.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call