Abstract
In order to optimize the shock wave generated by underwater pulsed discharge, the relationship between cavity parameters and shock wave propagation is further studied by three-dimensional numerical simulation. According to the sound pressure field distribution obtained by the simulation, the reflection of the shock wave by the reactor wall can be clearly observed. The reflected pressure wave will reach its maximum value and then gradually attenuate. The study also found that when the deposition energy is constant, when the initial radius of the arc channel increases from 0.1 mm to 2.5 mm, the maximum amplitude of the shock wave will increase from 0.22 × 105 Pa to 1.70 × 105 Pa. When the initial radius of the arc channel is constant, as the deposition energy increases, the time to radiate the shock wave becomes earlier, and the maximum amplitude of the shock wave will increase. This means that a higher pressure can be generated by increasing the input of the deposition energy. When the deposition energy is constant, a higher-pressure level can be obtained by increasing the initial radius of the channel. The excitation frequency also affects the shock wave amplitude. Higher excitation frequency can obtain higher pressure amplitude. These methods will increase the efficiency of underwater pulse discharge treatment of bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.