Abstract

To ensure the safety of geological disposal of radioactive wastes, understanding the migration behavior of radioactive species in montmorillonite clays has become increasingly important. However, there are still many indeterminate aspects about the influence of cation species and humidity on the interlayer water dynamics and swelling properties of montmorillonite clays. In this work, by using XRD and 1H-NMR spin-lattice relaxation rate (1/T1) techniques, we aimed to clarify the relation between water layer thickness and molecular dynamics in various cation-exchanged montmorillonites (Mn+-MMTs; Mn+ = Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, La3+, Sm3+, and Lu3+) in the temperature range of -40 °C to 50 °C. XRD measurements showed that layer thickness in Mn+-MMTs increased with increasing hydrated water according to the order of structure-breaking chaotropic K+, Rb+, Cs+ ions, structure-making kosmotropic and borderline Li+, Na+, Ba2+ ions, divalent ions, and trivalent lanthanide ions. It was found t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.