Abstract

Ionic liquids consisted of 1-((2-methoxyethoxy)methyl)-1-methylpiperidinium (PP1MEM) or 1-hexyl-1-methylpiperidinium (PP16) and bis(trifluoromethanesulfonyl)amide (TFSA) were applied to an electrolyte for Li-ion battery. The effect of their cation structure on anode properties of Si electrodes were investigated through the use of thick film prepared by gas-deposition without any binder and conductive additive. The Si electrode in PP1MEM-TFSA exhibited an initial reversible capacity of 2670 mA h g−1, which is larger than that in PP16-TFSA by ca. 900 mA h g−1. Moreover, a comparatively high capacity of 1150 mA h g−1 at a high current density of 4200 mA g−1 is achieved in PP1MEM-TFSA whereas the Si electrode in PP16-TFSA showed the capacity of only 210 mA h g−1. Raman analysis and electrochemical impedance measurements revealed that PP1MEM cation played a role reducing the interaction between Li ion and TFSA anions, and that Li-ion transfer at the electrode−electrolyte interface in PP1MEM-TFSA was remarkably improved compared with PP16-TFSA. These results indicate that the excellent performances obtained in PP1MEM-TFSA originate from a smooth Li-insertion into Si electrode. It was suggested that introduction of ether functional group into cation is valid to enhance the electrode performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.