Abstract

Cyclic voltammetry and electrochemical impedance spectroscopy were used to examine several types of carbon electrodes in VIV/VV in H2SO4. The materials investigated included glassy carbon, graphite, carbon paper, reticulated vitreous carbon and carbon fibers. In all cases the electrode kinetics of the VIV/VV oxidation-reduction reactions are enhanced by cathodic treatment of the electrode and inhibited by anodic treatment. Pronounced activation typically occurs at potentials more negative than +0.1 V (vs. Hg/Hg2SO4); the effect begins to saturate at about –0.6 V. Pronounced deactivation typically occurs at potentials more positive than +0.7 V. Both activation and deactivation occur rapidly during the first ∼10 s at the most negative and most positive potentials, respectively. The activation effect saturates quickly at the most negative potentials but the deactivation effect does not saturate on the time scales investigated. There is a considerable shift (∼1.1 V) between the potentials for activation and deactivation. Activated electrodes showed no significant loss of activity after standing in the electrolyte for 3 weeks; deactivated electrodes regained about 50% of their activity. The activation and deactivation effects were observed regardless of whether vanadium was present in the electrolyte and are attributed to oxygen-containing functional groups on the electrode surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.