Abstract

Fuel cell tests are conducted under various cathode conditions to investigate the effect of cathode conditions on the performance of a direct borohydride–hydrogen peroxide fuel cell (DBHPFC) system. The efficiency and mass of the virtual DBHPFC system are estimated based on experimental data obtained from the fuel cell tests. The type of cathode electrocatalyst considerably affects the performance and mass of the fuel cell system. Ni is the most suitable for the cathode owing to its high fuel utilization efficiency and low cost. The H2O2 concentration has a minimal effect on the performance of the fuel cell system but considerably affects the mass of the fuel cell system. The mass of the fuel cell system negatively correlates with the H2O2 concentration. The H3PO4 concentration and operating temperature have a negligible effect on the performance and mass of the fuel cell system; 5 wt% H3PO4 is sufficient to suppress the decomposition reaction and improve the fuel cell performance. Operation at room temperature is recommended for high fuel utilization efficiency. The decomposition reaction rate affects the efficiency and mass of the DBHPFC system. Consequently, the decomposition and electrochemical reaction rates should be considered when determining suitable cathode conditions for the DBHPFC system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.