Abstract

We demonstrated that the diameter and the density of carbon nanotubes (CNTs) which had a close relation to electric-field-screening effect could be easily changed by the control of catalytic Ni thickness combined with NH3 plasma pretreatment. Since the diameter and the density of CNTs had a tremendous impact on the field-emission characteristics, optimized thickness of catalyst and application of plasma pretreatment greatly improved the emission efficiency of CNTs. In the field emission test using diode-type configuration, well-dispersed thinner CNTs exhibited lower turn-on voltage and higher field enhancement factor than the densely-packed CNTs. A CNT film grown using a plasma-pretreated 25 angstroms-thick Ni catalyst showed excellent field emission characteristics with a very low turn-on field of 1.1 V/microm @ 10 microA/cm2 and a high emission current density of 1.9 mA/cm2 @ 4.0 V/microm, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call