Abstract
The alumina catalyst employed in the modified Claus process for sulfur recovery is often partially deactivated from sulfation of its active surface. This decreased catalytic activity is particularly detrimental to the hydrolysis reactions of COS and CS2 because incomplete hydrolysis results even though their theoretical conversion limit is 100%. Simulation of the reactor performance at typical Claus plant-operating conditions was possible using experimentally obtained rate functions for the two simultaneous hydrolysis reactions and the H2S/SO2 reaction. Using these rate constants, rather small values of the effectiveness factor were predicted for the hydrolysis reactions. By increasing the value of the effectiveness factor, it should be possible to improve the hydrolysis conversions without altering the process conditions appropriate for good sulfur recoveries. This was achieved by changing the particle shape to increase the external surface area. The simulation of a Claus catalytic converter, based upon a plug-flow adiabatic fixed-bed computer model using various shapes for the catalyst particles, showed that improved performance results even when the catalyst surface is partially sulfated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.