Abstract

Abstract Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 °C) and then treated at 450 °C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 °C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 °C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 °C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25–40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.