Abstract

The effects of catalase regulators (aminotriazole, lead acetate, taurine, di-2-ethylhexylphthalate) on the preference for ethanol, its pharmacokinetics, and activities of rat liver and brain ethanol and acetaldehyde-metabolizing enzymes were studied. Lead acetate (100 mg/kg, i.p., 7 days), aminotriazole (1 g/kg, i.p., 7 days), and taurine (650 mg/kg, i.g., 14 days) decreased ethanol consumption under conditions of free choice (10% ethanol water), whereas di-2-ethylhexylphthalate (300 mg/kg, i.g., 7 days) did not exert any effect on this parameter. Taurine, lead acetate and di-2-ethylhexylphthalate significantly activated liver ADH, MEOS and catalase peroxidase activity. Aminotriazole also activated ADH and MEOS, but inhibited liver catalase. The activities of liver and brain A1DH as well as catalase were insignificantly changed by this treatment. The 7-day administration of lead acetate, di-2-ethylhexylphthalate and aminotriazole administrations significantly influenced the ethanol (2 g/kg., i.p.) pharmacokinetic parameters: the area under the pharmacokinetic curve and the elimination half-life time were significantly reduced, whereas the elimination constant and clearance were increased. This unequivocally indicates accelerated ethanol elimination. The 14-day ingestion of taurine insignificantly changed the parameters of ethanol pharmacokinetics in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call