Abstract

In this study, two casting speeds of 10 and 30 r/min were used in vertical twin-roll casting (TRC) to obtain Mg-rare earth (Mg-RE) alloys, and their microstructures, corrosion behaviours and in vivo bone reactions were investigated in detail. The results indicated that the roll-castings of TRC-30 r/min exhibited a finer grain size and higher volume fraction of non-crystallization than those in castings of TRC-10 r/min. Moreover, the results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization indicated that the castings of TRC-30 r/min displayed a higher corrosion resistance compared with those in the castings of TRC-10 r/min. Animal tests showed that a higher degree of newly formed bone tissues was achieved by implants of TRC-30 r/min. Additionally, in vivo tests displayed that degradation properties of the TRC-30-r/min implants were better than those of the TRC-10-r/min implants; furthermore, the degradation layer was a two-layer structure, and P and Ca were enriched in the outer degradation layer. In summary, these findings elucidated that casting speed has a substantial effect on the microstructure and degradation property of Mg-based implants, and the degradation property performs better with increased casting speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.