Abstract

This study focused on examining the gas dynamics, rumen fermentation, and digestibility of ensiled cassava pulp (CSVP) using Lactobacillus casei TH14, urea, and molasses in the context of a laboratory experiment. All data in this study were analyzed using treatments arranged in 2 × 2 × 2 factorial arrangements using a completely randomized design. The L.casei TH14 additive (L) was factor A. Factor B was the molasses additive (M), while factor C was urea (U). There was no interaction effect of L, U, and M on gas production, volatile fatty acid (VFA) content, pH value, or ammonia-nitrogen level (P<0.05). The interaction of L, U, and M influenced in vitro dry matter digestibility (IVDMD) at 12 h (P < 0.05), and the CSVP fermented with the additions of L, U, and M together (LUM) was higher than the additions of CON, M, U, UM, and L on IVDMD (P < 0.05). However, the IVDMD values of adding LUM were higher in the control group (CON), M, U, UM, and L additive groups (P < 0.05). There was an interaction effect of L, U, and M on the protozoal count at 8 h (P<0.05), which had a lower protozoal count in the control group. In addition, acetic acid and butyric acid concentrations at 4 h and 8 h (P<0.05) were increased during the fermentation of CSVP using L and M combinations. Furthermore, the combination of U and M enhanced (P<0.05) average acetic acid, propionic acid, and pH at 4 h and 8 h while reducing (P<0.05) the gas generation from the insoluble portion (b). It was suggested that utilizing L. casei TH14 together with urea and molasses can enhance nutrient contents and improve the in vitro dry matter digestibility of CSVP, although it has no effect on ruminal fermentation or gas production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call