Abstract
Having used thermally stimulated conductivity (TSC) technique, we identified deep electron traps that produce strong effects on charge carrier transport and photoconductivity in InGaAs/GaAs quantum dot (QD) structures. The values of deep levels below the conduction band of GaAs at 0.16, 0.22, and 0.35 eV are obtained from the analysis of the shapes of TSC curves after the excitation with the quanta energy hv = 0.9, 1.2, and 1.6 eV. The level 0.16 eV in depth is an effective electron trap that provides crossing of lateral conductivity with a high-resistance mode and, therefore, causes a high photocurrent sensitivity of about 3 A/W at 77 K with excitation by interband transitions in QDs. We determined the charge density of electrons captured by the (Ec – 0.16 eV) level to be 2 × 10−6 C/cm2 at 77 K that induces electric field ∼ 105 V/cm in a vicinity of QDs. The state at Ec – 0.22 eV is shown to be related to the recombination center that can hold non-equilibrium holes over a long time under the condition that the non-equilibrium holes are localized by the quantum states of QDs. In the course of long-term electron storage in a vicinity of QDs, an electron trapped at the (Ec – 0.16) eV level can be recaptured by a deeper spatially remote (Ec – 0.22 eV) level that allows the TSC peak observation at 106 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.