Abstract

Ultrasound wave propagation in nanofluids and its rheological behavior has been studied as a function of solid volume fraction, temperature and magnetic field for magnetic nanofluids synthesized in kerosene and transformer oil. Ultrasonic velocity decreases while viscosity increases with increasing volume fraction. The attenuation of ultrasonic wave is explained using dipolar coupling co-efficient which favors oligomer structures with increasing number density of particles. The structure formation increases further with increase in magnetic field which is prominent in transformer oil compared to kerosene. This difference can be due to the structural difference between these two carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call