Abstract

The aim of this study was synthesis of the polyphenylene sulfide (PPS) containing carboxyl unit and investigation of the effect of modified PPS used as compatibilizer on the interfacial micromechanical properties of carbon fiber (CF) reinforced PPS composites. A series of copoly(1,4-phenylene sulfide)-poly(2,5-phenylene sulfide acid) (PPS-COOH)s containing different proportions of carboxyl units in the side chain were synthesized by the reaction of dihalogenated monomer and sodium sulfide via nucleophilic substitution polymerization under high pressure. According to the results of FT-IR, DSC, TGA, mechanical test and contact angle test, all of the copolymers were found to have analogous structure and improved hydrophilic property comparing with neat PPS. There was a good physical compatibility between the modified PPS and the pure PPS. The microbond test (measuring apparent interfacial shear strength (τapp) of the composite) and scanning electron microscopy (SEM) also showed that the optimized PPS-COOH (7.5) can be used to improve the micro-mechanical properties and interfacial bonding between CF and PPS matrix. The maximum τapp of 10%PPS-COOH (7.5)/PPS/CF composite was 49.1 MPa, which had increased 36.0% comparing with that of the pure PPS/CF composite (36.1 MPa).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call