Abstract

This paper investigated the effect of carbonation curing on sulfate attack resistance of cement-coal gangue (PC-CG) pastes. Mechanical strength, volume deformation, and mass change of PC-CG blends were examined after different durations of sulfate solution immersion. On the other hand, the microstructure deterioration mechanism was determined using X-ray diffraction (QXRD/Rietveld), thermogravimetry differential thermal analysis (TG-DTA), mercury intrusion porosimeter (MIP), scanning electron microscope (SEM) measurements. Experimental results showed that accelerated carbonation improved the initial compressive strength before sulfate attack and alleviated the compressive strength loss with exposure to sulfate solution. The final compressive strength of carbonated specimens containing 0% or 10% coal gangue after 6 months of sulfate exposure retained 6.55% or 3.61% higher than those of the corresponding control mixtures before sulfate attack. In addition, the final compressive strength reduction of all carbonated specimens is much lower than those of the control specimens (8.69%∼34.19% VS. 12.93%∼47.52%). Moreover, the accelerated carbonation induced a decreasing expansion for every mixture (carbonated 2.32%∼6.11% VS. control 3.79%∼8.86%) partly due to the reduction of porosity and refinement of pore structure. Therefore, the combination of incorporating coal gangue and carbonation curing provides to a potential for manufacturing cement-based materials with better environmental sustainability and long-term durability in external sulfate attack regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.