Abstract

Background: Relapse occurs frequently, 70–90% of the time, and typically compromises the outcome of orthodontic therapy. Calcium carbonate (CaCO3), which is found in cuttlefish shells, can be used to make a better biomaterial. One example is carbonated hydroxyapatite, which is very similar to human bone tissue and can stop osteoclast activity on the pressure side of the retention phase. This is a factor in orthodontic relapse, which is when the bone doesn't remodel properly. In this study, a test was done to see if carbonated hydroxyapatite (CHA) could be used as an alternative material to stop orthodontic relapse. The test was based on how the RANK-RANKL, OPG, and TGF-β proteins interacted with each other.
 Method: CHA extracted from cuttlefish shells after 6 hours of calcination at 1000°C. RANK-RANKL, OPG, and TGF-β interactions were investigated in silico using molecular docking. 
 Result: A cuttlefish shell extract containing CHA has the potential to be used as an alternate material to prevent orthodontic recurrence. CHA chemicals can disrupt the link between RANK and RANKL and enhance OPG and TGF-β expression. This induces enhanced proliferation, which increases the number of osteoblasts and osteoblast differentiation while decreasing the rate of osteoclast activity.
 Conclusion: Cuttlefish shell with CHA extract has the potential to be used as an alternative material to prevent orthodontic relapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.