Abstract

Amorphous calcium phosphate (ACP) was transformed at 25 degrees to hydroxyapatite (HA) in horse and bovine serum; solutions of serum-protein fractions in tris-HC1 buffer (pH 7.4), and pH 7.4 buffers containing from 0.1 to 10 times physiological CO3(2-) concentration. The ACP-to-HA transformation was slower in whole serum and serum fractions than in control buffer solution. The observed adsorption of serum proteins on ACP and HA probably inhibits both the dissolution of the ACP particles and the growth of HA crystals. After 72 h all transformations were complete as determined by X-ray diffraction. The HA crystal dimensions decreased with increasing C03(2-) but the shape, as shown by X-ray linewidths, was relatively constant up to about 4% CO3(2-). At 15% CO3(2-) the crystals were more equiaxial and less needle-like in habit. The radial distribution function (RDF) of HA with 3.7% CO3(2-) is less well resolved than the RDF of HA with ambient CO3(2-) (1.1%). The peaks are less sharp and their amplitude falls more rapidly with increasing atomic separation than for low CO3(2-)-HA. These effects show that CO3(2-) decreases the regularity of the atomic arrangement when incorporated in HA. The rapid decrease, with increasing CO3(2-) content, of the IR splitting of the P-O bending mode of CO3(2-)-HA is attributed to reduced crystal size and possibly to a perturbation of the crystal field due to CO3(2-)-induced lattice distortion. Finally, for bone mineral, it is probable that the poor resolution of the X-ray and IR patterns is due, in large part, to small crystal size and internal disorder caused by CO3(2-).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.