Abstract

Amorphous Silicon oxycarbide (SiCO) shows excellent electrochemical and cycling performance upon lithium intercalation, and is a promising anode material for future lithium-ion batteries. Carbon segregation is a unique molecular structure of SiCO and may plays a key role in its properties, a deep understanding of structure-performance relationship is crutial for reational design of SiCO anode. In this work, first principle calculations were used to investigate the effect of carbon segregation on performance of SiCyO6/5 as anode materials. Based on the calculations results, carbon segregation made small contribution on lithium capacity, while it stablized the whole system by forming three dimensional network, resulting in small volume expansion and stable mechanical properties. The theoretical capacities of SiCO with free carbon were obtained based on the most stable compositions of the lithiated structures, the predicted reversible capacities are comparable to the experimental data. The structure with higher carbon content presents larger Young's modulus during the whole lithiation process, and the saturation points of SiCyO6/5 can also be inferred from the Li content -Young's modulus curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.