Abstract

In this work, the effect of carbon quantum dots (CQDs) on the optical and electrical properties of polyvinylidene fluoride (PVDF) has been investigated. Different weight percent (0, 1, 3, 5 and 10 wt%) ratios of CQDs/PVDF nanocomposite films were prepared using solution casting technique. The morphological properties of CQDs were examined using a transmission electron microscope (TEM). The optical properties of the prepared plain PVDF and CQDs/PVDF nanocomposite films were measured using UV–Visible spectrophotometer in the wavelength range 190–1200 nm. The direct energy band gap (Eg dir.) of the prepared films decreases from 5.28 to 2.96 eV as the wt% ratio of CQDs/PVDF increases from 0 to 10.0%. The DC electrical conductivity (σDC) of the prepared nanocomposite films are measured in the temperature range from 298 to 398 K. The electrical conductivity of the nanocomposite films has been enhanced six times in magnitude as compared with that of the plain PVDF film, as the wt% ratio of CQDs/PVDF increases up to 10 wt%. The enhancement in the optical and electrical properties of PVDF makes it as a novel candidate in various optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call