Abstract
La(Fe,Si)13 alloys display a giant magnetocaloric effect when a magnetic field is applied near the Curie temperature TC. However, to use these alloys for domestic refrigeration based on magnetic cooling, it is vital to increase TC near to the room-temperature range while simultaneously maintaining a large magnetocaloric effect. With this aim, we studied the effect of interstitial carbon on the microstructure and magnetocaloric effect in LaFe11.6Si1.4Cx (x = 0–0.4). The investigation was carried out in cast samples annealed for seven days at 1323 K. The study of microstructure shows that annealing led to about 90 wt. % of 1:13 magnetocaloric phase. Magnetization data revealed that the addition of carbon leads to an increase in TC and a decrease of the thermal hysteresis width. For x > 0.2, the magnetic transition changes from first-order to second-order, with a corresponding reduction in magnetocaloric effect. A small amount of C (x up to 0.2) improves the magnetocaloric properties of the parent alloy La(Fe,Si)13, and, furthermore, the carbon addition leads to an increase in the thermal stability of hydrided LaFe11.6Si1.4Cx. The onset of hydrogen desorption increases from 460 K for the x = 0 (carbon-free alloy) to 500 K and 540 K, respectively, for x = 0.1 and x = 0.2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.