Abstract

Thermoelectric oxides can provide the advantage of high-temperature stability in oxygen-containing atmospheres. It is known that the incorporation of multiwalled carbon nanotubes (mw-CNT) can change the thermoelectric as well as the structural properties of oxides. Here, we report the influence of mw-CNT on the thermoelectric properties of Al-doped ZnO (AZO). The preparation of the mw-CNT-added AZO was done using an ultrasonic mixing of the starting materials followed by a spark plasma sintering process under vacuum. The Seebeck coefficient S, thermal conductivity λ and electrical conductivity σ were determined in the temperature range between 300 K and 900 K. It was observed that the thermal conductivity is significantly reduced by the incorporation of the mw-CNT. At the same time, the electrical conductivity is increased by a factor of 21 from 8700 S/m to 190,000 S/m. The Power factor \({\rm PF} = S^{2} \sigma\) indicates that the addition of mw-CNT improves the thermoelectric properties of Al doped ZnO in comparison to the reference sample prepared with same process but without mw-CNT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.