Abstract

ABSTRACTComposites with damping–absorption performance and storage-loss behavior based on carbon nanotubes as a modifier and zinc titanate/room temperature vulcanized silicone rubbers as a matrix were fabricated by a reactive solution mixing process, wet ball milling, and the three-roller milling method. The microstructures, chemical structures, and morphologies of the composites were characterized by scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The thermal stabilities were investigated by thermogravimetric analysis. The effect of carbon nanotubes on the comprehensive performance of the carbon nanotube/zinc titanate/room temperature vulcanized silicon rubber composites was investigated. It was found that doping with carbon nanotubes can improve the comprehensive performance of the zinc titanate/room temperature vulcanized silicon rubber complex matrix. The best comprehensive properties were d33 = 72 pC/N, storage modulus = 4,100 MPa, loss modulus = 400 MPa, damping coefficient = 0.23, and absorption coefficients = 0.4–0.6 for 4 wt% carbon nanotube/zinc titanate/room temperature vulcanized silicon rubber. In addition, the lattice parameters of zinc titanate were found to be highly dependent on the carbon nanotube content, and the absorption and damping performance of the composites were dependent on the frequency and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.