Abstract

In this paper, the effects of carbon nanotubes (CNT) implantation and sisal fibre size on the electrical properties of sisal fibre-reinforced epoxy composites are reported. For this purpose, the epoxy composites reinforced with CNT-implanted sisal fibre of 5 mm and 10 mm lengths were prepared by hand moulding and samples characterized for their electrical properties, such as dielectric constant (ε′), dielectric dissipation factor (tan δ) and AC conductivity (σac) at different temperatures and frequencies. It was observed that the dielectric constant increases with increase in temperature and decreases with increase in frequency from 500 Hz to 5 KHz. Interestingly, the sample having CNT-implanted sisal fibre of 5 mm length exhibited the highest value of dielectric constant than the one with length 10 mm. This is attributed to the increased surface area of sisal fibre and enhancement of the interfacial polarization. At a constant volume and a length of 5 mm of the fibres, the number of interfaces per unit volume element is high and results in a higher interfacial polarization. The interfaces decrease as the fibre length increases, and therefore, the value of ε′ decreases at 10 mm fibre length. The peak value of the dielectric constant decreases with increasing frequency. A continuous decrease in dissipation factor (tan δ) with increasing frequency for all samples was observed, while at lower temperatures, the values of tan δ remains approximately same. The AC conductivity for 5 mm length sisal epoxy composite and 10 mm length sisal fibre–epoxy composites is higher than that of pure epoxy at all the frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call