Abstract

The design of an interfacial structure is particularly important for load transfer in composites. In this paper, different amounts of carbon nanotubes (CNTs) were grafted onto the carbon fiber (CF) surface by adjusting grown temperature using injection chemical vapor deposition (ICVD). The prepared CF preform grafted with CNTs (CNTs-CF) were used to reinforce magnesium alloy by squeeze casting process. The microstructures were analyzed by means of optical microscope (OM) and scanning electron microscope (SEM), and the interlaminar shear strength (ILSS) and tensile strength of the composites were determined by double-notch shear test and tensile test. The results indicated that moderate ILSS was more conducive to improving the tensile properties of carbon fiber reinforced magnesium matrix (Cf/Mg) composites. Compared with Cf/Mg, the tensile strength of composite with CNTs increased by about 80%. For Cf/Mg composites grafted with CNTs, CNTs had the effects of delaying crack propagation and increasing energy consumption by the pull-out and bridging mechanism, which were the main reasons for improving the strength. The analysis of shear fracture surface showed that the crack propagation path can be optimized by adjusting the amounts of grafted CNTs. The presence of CNTs affects the stress distribution and consequently the crack initiation as well as the crack propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call