Abstract

The effect of acid-treated carbon nanotube (CNT) addition on the wear and dynamic mechanical thermal properties of basalt/epoxy woven composites was investigated in this study. Basalt/CNT/epoxy composites were fabricated by impregnating woven basalt fibers into epoxy resin mixed with 1 wt% CNTs which were acid-treated. Wear and DMA (dynamic mechanical analyzer) tests were performed on basalt/epoxy composites and basalt/CNT/epoxy composites. The results showed that the addition of the acid-treated CNTs improved the wear properties of basalt/epoxy woven composites. Specifically, the friction coefficient of the basalt/epoxy composite was stabilized in the range of 0.5-0.6 while it fell in the range of 0.3-0.4 for basalt/CNT/epoxy composites. The wear volume loss of the basalt/CNT/epoxy composites was approximately 68% lower than that of the basalt/epoxy composites. The results also showed that the glass transition temperature of basalt/CNT/epoxy composites was higher than that of basalt/epoxy composites. The improvement of wear properties of basalt/epoxy composites by the addition of acid-treated CNTs was caused by the homogeneous load transfer between basalt fibers and epoxy matrix due to the reinforcement of CNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call