Abstract

In the present study, effect of vapor grown carbon nanofiber on the mechanical and thermal properties of polypropylene was investigated. Firstly, nanofibers were dry-mixed with polypropylene powder and extruded into filaments by using a single screw extruder. Then the tensile tests were performed on the single filament at the strain rate range from 0.02/min to 2/min. Experiments results show that both neat and nano-phased polypropylene were strain rate strengthening material. The tensile modulus and yield strength both increased with increasing strain rate. Experimental results also show that infusing nanofiber into polypropylene can increase tensile modulus and yield strength, but decrease the failure strain. At the same time, thermal properties of neat and nano-phased polypropylene were characterized by TGA. TGA results have showed that the nanophased system is more thermally stable. At last, a nonlinear constitutive equation has been developed to describe strain rate sensitive behavior of neat and nano-phased polypropylene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call