Abstract

The effect of carbon dioxide on pigment and membrane content in Synechococcus lividus was studied by depriving cells of CO2 and examining cell populations biochemically and by electron microscopy. After 120 h of CO2 deprivation, S. lividus lost all detectable chlorophyll a and C-phycocyanin. Such bleached cultures were "mustard yellow", the result of approximately 1.8 times more carotenoid per cell than green control cultures. Although cells from beached cultures appeared morphologically identical to control green cells when examined by light microscopy, electron microscopic examination revealed them to be devoid of detectable thylakoid membrane. Thylakoid membrane could not be recovered by physical isolation or revealed by freeze etching of bleached S. lividus. In addition, inclusion bodies characteristically found in S. lividus were also absent. Reintroduction of CO2 into bleached cultures resulted in a rapid resynthesis of both chlorophyll a and C-phycocyanin. Electron microscopic examination of these regreening cultures revealed that thylakoid membrane was also rapidly resynthesized. Growth of regreened cultures did not occur until there was the synthesis of a full complement of chlorophyll a, C-phycocyanin, and thylakoid membrane. A time course study of the cytological events occurring during bleaching and regreening is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call