Abstract
Survival, behavior, hemolymph pH, osmolality, and chloride ion concentration as well the total metabolic rate (heat dissipation rate) of the isopod Saduria entomon from the brackish Baltic Sea were investigated after exposure to carbon dioxide-induced water acidification (pH, 7.5, 7.0, and 6.5; control pH, 8.2) keeping other parameters constant (temperature, 10°C; salinity, 7). The short-term (12 h per each pH treatment) exposure to carbon dioxide-induced water acidification did not cause significant changes (P < 0.05) in the resting metabolic rate or the scope of activity in S. entomon; however, high interindividual variability was observed. The 2-wk exposure to lowered pH values did not affect either the activity of the isopods or their survival rate significantly (P > 0.05), which was greater than 90% in all pH treatments. The hemolymph pH increased significantly (P < 0.05) with a decrease of water pH from a control pH of 8.2 down to a pH of 7.0. Hemolymph osmolality increased significantly (P < 0.05) at pH 7.5, but exposure to pH 7.0 did not cause further increase in this parameter. Reduction of water pH did not affect the hemolymph chloride ion concentration. Obtained results indicated that S. entomon is adapted to large fluctuations of carbon dioxide levels in the water primarily to compensate for acid—base disturbances without additional energetic costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Shellfish Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.