Abstract
If nutrient removal is to be obtained in ponds treating sewage, the pH must be raised so that ammonia can desorb and phosphates can precipitate. In this paper it is shown that the pH increase in ponds can be predicted quantitatively from simple stoichiometry, taking into consideration physical and biological carbon dioxide removal, ammonia stripping and calcium carbonate precipitation. Biological CO2 removal by photosynthesis is identified as the main process to effect pH increase in ponds. The rate of pH increase and consequently the required retention time depend on the net rate of CO2 consumption, the extent of ammonium stripping, the characteristics of the influent (alkalinity and pH) as well as factors concerning the environment (temperature) and dimensions (depth) of the pond. A high pH (range 9 to 10) can be obtained in about 5 days if digested sewage is used (low organic material concentration), climate conditions are favourable and the pond is shallow (< 0.5 m deep).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.