Abstract

The influence of carbon content on the stacking fault energy (SFE) of Fe–20Mn–3Cu twinning-induced plasticity (TWIP) steel was investigated by means of X-ray diffraction peak-shift method and thermodynamic modeling. The experimental result indicated that the stacking fault probability decreases with increasing carbon addition, the SFE increases linearly when the carbon content in mass percent is between 0. 23% and 1.41%. The thermodynamic calculation results showed that the SFE varied from 22. 40 to 29. 64 mJ · m−2 when the carbon content in mass percent changes from 0. 23 % to 1.41%. The XRD analysis revealed that all steels were fully austenitic before and after deformation, which suggested that TWIP effect is the predominant mechanism during the tensile deformation process of Fe-20Mn-3Cu-XC steels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.