Abstract

A compression test simulating heavy-reduction single-pass rolling was conducted to investigate the microstructural evolution based on the formation of a bimodal structure and the mechanical properties of 0.01% and 0.1% carbon steels and niobium steel. When thermomechanical processing was conducted near and above the critical transformation temperature (Ac3), microstructures of all steels were significantly refined and consisted of equiaxed grains without elongated grains. Nevertheless, these microstructures showed weak or no formation of the bimodal structure or coarse grains with decreasing carbon content, while they showed bimodal structure formation when 0.2% carbon steel was used in our previous research. The average grain size of Nb steel was about 2μm and its microstructure was uniformly refined. These may be attributed to a decrease in the number of nucleation sites with decreasing carbon content in low-carbon steels and the occurrence of nucleation at grain boundaries as well as in grain interiors in Nb steel during processing. Mechanical properties of all steels deformed above the critical transformation temperature exhibited high performance characteristics with superior strength and marked elongation. Their fractographs indicated ductile fracture, which was revealed by SEM observation after a tensile test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.