Abstract

The superlattice La–Y–Ni-based hydrogen storage alloys have high discharge capacity and are easy to prepare. However, there is still a gap in commercial applications because of the severe corrosion of the alloys in electrolyte and poor high-rate dischargeability (HRD). Therefore, (LaSmY) (NiMnAl)3.5 alloy was prepared by magnetic levitation induction melting, and then the alloy was coated with different contents (0.1 wt%–1.0 wt%) of nano-carbons by low-temperature sintering with sucrose as the carbon source in this work. The results show that the cyclic stability and HRD of the alloy first increase and then decrease with the increase of carbon contents. The kinetic results show that the electrocatalytic activity and conductivity of the alloy electrodes can be enhanced by carbon coating. The electrochemical properties of the alloy are the best when the carbon coating content is 0.3 wt%. Compared with the uncoated alloy, the maximum discharge capacity (Cmax) improves from 354.5 to 359.0 mAh/g, the capacity retention rate after 300 cycles (S300) enhances from 73.15% to 80.01%, and the HRD1200 of the alloy enhances from 74.39% to 74.39%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.