Abstract

This paper reports on an investigation into the impact of carboxylic acid chain length on the kinetics of liquid-phase acid-catalyzed esterification. Using sulfuric acid and a commercial Nafion/silica composite solid acid catalyst (SAC-13), initial kinetics were measured for the reactions of a series of linear chain carboxylic acids (acetic, propionic, butyric, hexanoic, and caprylic acid) with methanol at 60 °C. It was found that reaction rate decreased as the number of carbons in the linear alkyl chain increased for both H 2SO 4 and SAC-13. This trend is discussed in terms of the polar and steric effects of the alpha-substituent to the carboxylic group and evaluated by a Taft-type correlation. Using a mechanistically based kinetic model, the reaction kinetic parameters of SAC-13 catalysis were determined and compared for different carboxylic acids. Moreover, important parameters, such as water deactivation, catalyst reusability, and regeneration, were also affected by the size of the carboxylic acid used. SAC-13 underwent significantly more activity loss with subsequent reaction cycles as the size of the alkyl tail on the carboxylic acid increased. Characterization of the catalyst after reaction suggested that the deactivation of SAC-13 is likely caused by the entrapment of bulky reaction intermediates in or on Nafion polymeric nanodomains blocking catalytic acid sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.