Abstract

AbstractThe effect of the types of carbon black on the physicomechanical, dynamic mechanical, and dielectric relaxation spectra in chlorobutyl vulcanizates was studied. The primary relaxation (α transition, the glass transition) was studied by dynamic mechanical analysis as a function of temperature (−60 to +100°C) and by positron annihilation lifetime spectroscopy (−70 to +100°C). Irrespective of the type of carbon black that was used, all composites showed glass‐transition temperatures in the range of −29 to −33°C, which was explained on the basis of the relaxation dynamics of polyisobutylene chains in the vicinity of the fillers. The secondary relaxation (α* or β relaxation) was studied using dielectric relaxation spectra in the frequency range of 100–106 Hz. The nonlinear strain dependent dynamical parameters (Payne effect) were also evaluated at dynamic strain amplitudes of 0.07–5%. The nonlinearity in the tan δ and storage modulus was explained by the concept of filler–polymer interactions and the interaggregate attraction (filler networking). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1809–1820, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.