Abstract

The effect of carbon and nitrogen on mechanical properties of single and dual phase γ TiAl alloys was studied in tensile tests at room temperature as functions of content of interstitial elements such as carbon and nitrogen, titanium/aluminum compositional ratio and grain size. The fracture strain in stoichiometric and aluminum-rich TiAl alloys annealed at 1 423 K was improved from nearly zero plastic strain to 0.6-0.8% plastic strain by the addition of 0.3-0.6 at% carbon. In titanium-rich TiAl alloys annealed at 1 423 K and all of titanium-rich, stoichiometric and aluminum-rich TiAl alloys annealed at 1 573 K, tensile fracture strain was decreased by the addition of carbon and nitrogen. Volume of a unit cell in TiAl phase decreased by the addition of a small amount of carbon and nitrogen. The analysis of TiAl-1.0at%C alloys by an X-ray diffractometer showed the presence of Ti2AlC phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.